Natural Image Denoising with Convolutional Networks
نویسندگان
چکیده
We present an approach to low-level vision that combines two main ideas: the use of convolutional networks as an image processing architecture and an unsupervised learning procedure that synthesizes training samples from specific noise models. We demonstrate this approach on the challenging problem of natural image denoising. Using a test set with a hundred natural images, we find that convolutional networks provide comparable and in some cases superior performance to state of the art wavelet and Markov random field (MRF) methods. Moreover, we find that a convolutional network offers similar performance in the blind denoising setting as compared to other techniques in the non-blind setting. We also show how convolutional networks are mathematically related to MRF approaches by presenting a mean field theory for an MRF specially designed for image denoising. Although these approaches are related, convolutional networks avoid computational difficulties in MRF approaches that arise from probabilistic learning and inference. This makes it possible to learn image processing architectures that have a high degree of representational power (we train models with over 15,000 parameters), but whose computational expense is significantly less than that associated with inference in MRF approaches with even hundreds of parameters.
منابع مشابه
A Cascaded Convolutional Nerual Network for X-ray Low-dose CT Image Denoising
Image denoising techniques are essential to reducing noise levels and enhancing diagnosis reliability in low-dose computed tomography (CT). Machine learning based denoising methods have shown great potential in removing the complex and spatial-variant noises in CT images. However, some residue artifacts would appear in the denoised image due to complexity of noises. A cascaded training network ...
متن کاملDilated Residual Network for Image Denoising
Variations of deep neural networks such as convolutional neural network (CNN) have been successfully applied to image denoising. The goal is to automatically learn a mapping from a noisy image to a clean image given training data consisting of pairs of noisy and clean image patches. Most existing CNN models for image denoising have many layers. In such cases, the models involve a large amount o...
متن کاملImage Denoising Using Very Deep Fully Convolutional Encoder-Decoder Networks with Symmetric Skip Connections
In this paper, we propose a very deep fully convolutional encoding-decoding framework for image restoration such as denoising and super-resolution. The network is composed of multiple layers of convolution and de-convolution operators, learning end-to-end mappings from corrupted images to the original ones. The convolutional layers act as the feature extractor, which capture the abstraction of ...
متن کاملCystoscopy Image Classication Using Deep Convolutional Neural Networks
In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...
متن کاملNonlocality-Reinforced Convolutional Neural Networks for Image Denoising
We introduce a paradigm for nonlocal sparsity reinforced deep convolutional neural network denoising. It is a combination of a local multiscale denoising by a convolutional neural network (CNN) based denoiser and a nonlocal denoising based on a nonlocal filter (NLF) exploiting the mutual similarities between groups of patches. CNN models are leveraged with noise levels that progressively decrea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008